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The puzzling features of the slopes of the upper critical field at the critical temperature Tc, Hc2� �Tc��Tc, and
of the specific heat jump �C�Tc

3 of iron-pnictides are interpreted as caused by a strong pair-breaking.
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I. INTRODUCTION

Iron-pnictide superconductors have a number of uncom-
mon properties. The subject of this paper are two such prop-
erties. �a� The specific heat jump �C is proportional to Tc

3 as
demonstrated on “122” series of Ba�Fe1−xCox�2As2 and
Ba�Fe1−xNix�2As2.1 This behavior, according to Ref. 2, can-
not be explained within the “realm of conventional Bardeen-
Cooper-Schrieffer �BCS� theory.” Similar behavior is re-
corded in 122 crystals with Ba substituted partially with K
and with Fe substituted with Pd, Rh,3 and Co-Cu. �b� Slopes
of the upper critical field dHc2 /dT at Tc are approximately
proportional to Tc across both 1111 and 122 series.

It is shown below that both scalings can be understood
within the weak-coupling BCS model provided a strong pair-
breaking is present in these materials. In fact, these features
should also be present in conventional superconductors with
magnetic impurities as discussed by Abrikosov and Gor’kov
�AG� in the seminal work on the pair-breaking for the nearly
critical concentration of these impurities when Tc�Tc0, the
critical temperature of clean material.4 AG had considered
isotropic materials with a spherical Fermi surface and the
s-wave order parameter constant along this surface. The
symmetry of the order parameter in multiband pnictides is
not yet determined with certainty; however, many favor the
�s structure.5,6 The critical temperature in materials with a
strongly anisotropic order parameter is suppressed not only
by scattering breaking the time reversal symmetry �e.g., the
spin-flip�; in fact, any scattering reduces Tc. The term “pair-
breaking” is used here in a broad sense for any process sup-
pressing Tc. It is shown in this work that both features,
dHc2 /dT�Tc and �C�Tc

3, follow from the assumption that
the “pair-breaking in a broad sense” is strong.

Below, the linearized Ginzburg-Landau �GL� equation
and the energy near Tc are derived within the weak coupling
scheme �that allows one to evaluate dHc2 /dT and �C at Tc�
for an arbitrary anisotropy of the order parameter � and of
the Fermi surface in the presence of pair-breaking. The text
is focused on the situation when the average ��� over the F
surface is close to zero that presumably is the case of
pnictides.5,6 Comparison with the data available concludes
the paper.

Perhaps, the simplest for our purpose is the Eilenberger
quasiclassical version of Gor’kov’s theory that holds for a
general anisotropic F surface and for any gap symmetry7

v�f = 2�g − 2�f +
g

�−
�f� −

f

�+
�g� , �1�

− v��f+ = 2��g − 2�f+ +
g

�−
�f+� −

f+

�+
�g� , �2�

g2 = 1 − f f+, �3�

��r,kF� = 2�TN�0� �
�	0

�D

�V�kF,kF��f�kF� ,r,���kF�
. �4�

Here, v is the Fermi velocity, �=�+2�iA /
0, 
0 is the flux
quantum. ��r ,kF� is the order parameter that in general de-
pends on the position kF at the F surface of other than the
isotropic s-wave symmetry. The functions f�r ,kF ,��, f+, and
g originate from Gor’kov’s Green’s functions integrated over
the energy variable near the F surface. Further, N�0� is the
total density of states at the Fermi level per one spin; the
Matsubara frequencies are �=�T�2n+1� with an integer n
and �=kB=1. The averages over the F surface are shown as
� . . . �.

The scattering in the Born approximation is characterized
by two scattering times, the transport time � responsible for
conductivity in the normal state, and �m for spin-flip pro-
cesses

1

��

=
1

�
�

1

�m
. �5�

The strong scattering in unitary limit is not considered here.
Commonly, two dimensionless scattering parameters are
employed

� =
1

2�Tc�
and �m =

1

2�Tc�m
, �6�

or equivalently, ��=���m. This is of course a simplifica-
tion; for multiband F surfaces one may need more param-
eters for various intra- and interband processes. This and
other simplifying assumptions notwithstanding, the model
employed is amenable for analytic work and may prove
useful.

Long experience in dealing with pair-breaking effects has
shown that the formal AG scheme applies to various situa-
tions with different causes for the pair-breaking, not neces-
sarily the AG spin-flip scattering.8 In each particular situa-
tion, the parameter �m must be properly defined. Without
specifying the pair-breaking mechanism in materials of inter-
est here, we apply below the AG approach to show that the
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pair-breaking accounts for experimental data on slopes of
Hc2 at Tc and for quite unusual dependence of the specific
heat jump on Tc.

Commonly, the effective coupling V is assumed factoriz-
able, V�kF ,kF��=V0�kF��kF��,9 this assumption is not nec-
essary but it simplifies the algebra considerably. One then
looks for the order parameter in the form

��r,T;kF� = ��r,T��kF� . �7�

Our notation is motivated by the fact that so defined ��r ,T�
enters the Ginzburg-Landau theory near Tc. The function
�kF�, which describes the variation of � along the F sur-
face, is conveniently normalized

�2� = 1. �8�

Then, the self-consistency Eq. �4� takes the form

��r,T� = 2�TN�0�V0 �
�	0

�D

��kF�f�kF,r,��� . �9�

The assumption of a factorizable potential is quite restrictive
as far as complicated F surfaces and interactions are con-
cerned, e.g., within two-band schemes with four coupling
constants Vij, the factorizable model implies V11V22
−V12V21=0.

Instead of dealing with the effective microscopic electron-
electron interaction V0 and with the energy scale �D, one can
use within the weak coupling scheme the critical temperature
Tc0 �of the hypothetic clean material� utilizing the identity

1

N�0�V0
= ln

T

Tc0
+ 2�T �

�	0

�D 1

�
, �10�

which is equivalent to the BCS relation �0�0�=�Tc0e−�

=2�D exp�−1 /N�0�V0�; � is the Euler constant. Substitute
Eq. �10� in Eq. �9� and replace �D with infinity due to fast
convergence

�

2�T
ln

Tc0

T
= �

�	0

� ��

�
− �f�� . �11�

II. GL DOMAIN AND Tc(� ,�m)

Near Tc, f �1, g=1− f f+ /2 and Eq. �1� reads

1

2
v�f = � − �+f +

�f�
2�−

−
f f+

2
�� +

�f�
2�−

� +
f�f f+�
4�+

. �12�

Here,

�+ = � + 1/2�+, �13�

and the terms on the right-hand side �RHS� are arranged
according to their order in powers of �t=1−T /Tc: the first
three terms are of the order �t1/2 whereas the rest ��t3/2.
Note that on the left-hand side �LHS�, �f � f /���t.

We look for the solution f = f1+ f2+ . . . where f1��t1/2,
f2��t, etc. Hence, we have in the lowest order

0 = � − �+f1 +
�f1�
2�−

. �14�

Taking the average over the Fermi surface, we obtain

�f1� = ���/�m, �m = � + 1/�m �15�

�note the difference in definitions of �+ and �m�. Hence,

f1 =
1

�+�� +
���

2�−�m
� . �16�

Comparing terms of the order �t, we get

�f2� = −
�v�f1�

2�m
= 0, �17�

and

f2 = −
1

2�+
2 v��� +

���
2�−�m

� . �18�

Evaluation of higher order corrections for arbitrary � aniso-
tropy is increasingly cumbersome unlike the case ���=0 for
which one finds for the uniform state:

f3 = −
�

2�+
3��2 −

��2�
2�+�+� . �19�

The critical temperature of materials with anisotropic order
parameter is suppressed by scattering. In zero field, all quan-
tities are coordinate independent; besides, as T→Tc, g→1.
Therefore, we can utilize f of Eq. �16� in the lowest order to
obtain for Tc

1

2�Tc
ln

Tc0

Tc
= �

�	0

� � 1

�c
−

1

�c
+ −

��2

2�c
m�c

+�−
� , �20�

where the subscript c is to denote that �’s are taken at Tc.
The sums here are expressed in terms of di-gamma functions

ln
Tc0

Tc
= ��1 + �+

2
� − ��1

2
�

− ��2	��1 + �+

2
� − ��1

2
+ �m�
 . �21�

Within a two-band scheme, generalization of the well-known
AG result for the Tc suppression for any �Born� scattering
and for an arbitrary symmetry on the order parameter has
been given by Golubov and Mazin;10 in the form �21� it is
due to Openov.11

If Tc→0, one can use asymptotic expansion ��z�=ln z
−1 /2z for large arguments since � ,�m→�. The leading term
then gives that Tc=0 when scattering times satisfy the rela-
tion

1

�m
� �m

2�+
�1−��2

=
�0�0�

2
. �22�

Here, �0�0�=�Tc0e−� is the zero temperature gap of the �hy-
pothetic� scattering-free material. Clearly, this reduces to the
AG critical rate 1 /�m=�0�0� /2 for isotropic order param-
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eters. If ��=0 �e.g., for the d wave�, we have the critical
combined rate: 1 /�+=�0�0�.

For a general anisotropy ���0,1 in the absence of spin-
flip scattering ��m→�� the LHS is zero and Eq. �22� has no
solutions for �, i.e., Tc does not turn zero for any �. However,
a finite � at which Tc=0 does exist for any finite �m. One can

show that near the critical value �+,crit
��2−1=�0�0���m /2���2

, the
critical temperature behaves similarly to the AG gapless
case, Tc� ��+−�crit

+ �1/2.
Combining Eqs. �11� and �20�, one excludes the unphysi-

cal Tc0

�

2�T
ln

Tc

T
= �

�	0
� �

t�c
+ +

���2

2t�c
m�c

+�−

− �f�� , �23�

where t=T /Tc.

III. CASE Tc™Tc0

Situations of interest here are of Tc strongly suppressed
relative to Tc0 �similar to the gapless superconductivity of
AG, but not necessarily the same�. It is convenient for this
purpose to rearrange Eq. �23� by adding and subtracting
� /�+ under the sum. We transform

2�T �
�	0

� 1

t�c
+ −

1

�+�
= �

n=0

� � 1

n + 1/2 + �+/2
−

1

n + 1/2 + �+/2t
�

= ���+

2t
+

1

2
� − ���+

2
+

1

2
� � − ln t −

1 − t2

6�+
2 . �24�

The parameter �+ is large if Tc→0 and one can use large
arguments asymptotics of the di-gamma functions. Combin-
ing Eqs. �23� and �24�, we obtain the self-consistency equa-
tion in the form

��1 − t2�
12�T�+

2 = �
�	0

� �

�+
+

���2

2t�c
m�c

+�−

− �f�� . �25�

A. Linearized GL equation and the coherence length

The GL equations are obtained by utilizing smallness of
� /� and of v�� /�2 near Tc. Hence, one can use Eqs. �16�,
�18�, and �19� for f and the self-consistency Eq. �25�. For the
case of exclusively transport scattering ��m=��, the GL
equations have been derived in Ref. 12. It is done below for
a finite �m.

To write the self consistency Eq. �25� near Tc one has to
express �f� with the help of Eq. �12�. To this end, one
applies � /�+¯� to �12� keeping terms up to the order �t

�f� =
�

�+
+

���f�
2�−�+

− � 

2�+
v�f , �26�

and substitutes the result to Eq. �25�

��t

6�T�+
2 = �

�	0
	 ���2

2t�mc�c
+�−

−
���f�
2�+�−

+ � 

2�+
v�f
 .

�27�

Since we are expanding in powers of ��t, the distinction
between, e.g., �c and �=�c�1−�t�, is relevant.

When substituting here f = f1+ f2 of Eqs. �16� and �18�
note that �v���=0 because the angular dependence of 
�the symmetry of �� has nothing to do with that of the vector
��. We then obtain

��t

6�T�+
2 = �

�	0
	���2

2�−�+
2 � �+

2

t�c
m�c

+ − 1 −
1

2�−�m
�

−
1

4�c+
3 ��v��2��2 +

��
2�cm�−

�
 . �28�

Note that the LHS and the term in the lower line of this
equation are on the order �t3/2; for this reason all �’s in this
term are taken at Tc. Besides, the parentheses in the upper
line of the RHS are easily shown to turn to zero at t=1.
Expanding the bracketed expression in powers of �t and
keeping only the first term one obtains

A��t = − Bik�i�k� �29�

with

A =
1

6�Tc�+
2 −

��2

2�−
�
�	0

	�+
2 − 2��m

�m�+
3 −

�2�m + �+��
2�−�m

2 �+
3 
 ,

�30�

Bik =
1

4 �
�	0

1

�+
3�vivk�2 +

��
2�m�−

� , �31�

where all �’s are at Tc and the subscript c is omitted. This is
in fact, the linearized anisotropic GL equation

− ��2�ik�i�k� = � �32�

with the anisotropic coherence length given by

��2�ik = Bik/A�t . �33�

All sums in Eqs. �30� and �31� are expressed in terms of
poly-gamma functions of large parameters ��. Keeping the
leading terms we obtain

A =
1

6�Tc�+
2 −

��2�2�+ − �−�
�Tc�−

ln
�+

2�m
, �34�

Bik =
�2vivk��+

2

2�Tc
+

���vivk��−
2

2�Tc
	ln

�+

2�m
−

�−�2�+ + �−�
2�+

2 
 .

�35�

B. Materials with Š�‹=0 near Tc

This corresponds, e.g., to the d-wave symmetry. Within a
two-band model for iron-pnictides the order parameter has a
�s structure, so that ���� ��max�.6 One then expects the
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model with ��=0 to hold, at least qualitatively, for iron-
pnictides.

If ��=0, A and B are simplified

A =
1

6�Tc�+
2 , Bik =

�2vivk��+
2

2�Tc
, �36�

and

��2�ik =
3�2vivk�
8�2Tc

2�t
. �37�

For the d-wave order parameter and isotropic two-
dimensional Fermi surface, =�2 cos 2� and �2vx

2�=v2 /2

�2 =
3�2v2

16�2Tc
2�t

. �38�

This result has been obtained in Ref. 13 for a clean d wave
with a strongly suppressed Tc.

For a uniaxial material, the slope of the upper critical field
along the c direction near Tc is given by

dHc2,c

dT
= −

4�
0kB
2

3�2�2va
2�

Tc �39�

�in common units�. Although the pair-breaking parameters do
not enter this result explicitly, they affect Hc2,c and its slope
via Tc��+�. One readily obtains for the other principal direc-
tion

dHc2,ab

dT
= −

4�
0kB
2

3�2��2va
2��2vc

2�
Tc. �40�

It is worth recalling that in isotropic materials with the
standard s-wave order parameter the slope Hc2� �Tc in the
clean limit �because Hc2�1 /�2�Tc

2�, whereas for the dirty
case Hc2� is Tc independent �Hc2�1 /���Tc, � is the mean-
free path�. The proportionality Hc2� to Tc is a property of the
AG gapless state. In our case, the result �39� is obtained for
a strong pair-breaking in materials with anisotropic order pa-
rameter.

Note also that even without magnetic scatterers, in mate-
rials with ��=0 and ��1, the superconductivity becomes
“gapless” in a sense that the total density of states at the
Fermi level is not zero. As in the AG case, if Tc→0, the
superconductivity is weak at all temperatures, i.e., f �1 and
g=1− f2 /2=1−�2 /2�+

2 in the whole domain 0�T�Tc.
Then the energy dependence of the total density of states
N���=N�0�Re g��→ i�� reads

N���
N�0�

= 1 − 2�2�+
2 1 − �2

�1 + �2�2 , � = 2�+� . �41�

Hence, at zero energy, N��� has a nonzero minimum,
whereas the maximum of N��� is reached at �m=�3 /2�+ �not
at ��. Therefore, the ratio of the “apparent gap” �m to Tc
should vary as 1 /Tc. Since only the total density of states is
nonzero, this does not exclude possibility to have gapped and
gapless patches on the F surface.

IV. SPECIFIC HEAT JUMP

Eilenberger equations �1� and �11� in zero field can be
obtained minimizing the functional7

F = N�0�	�2 ln
T

Tc0
+ 2�T �

�	0
��2

��
− �I��
 , �42�

I = 2�f + 2��g − 1� +
f�f�
2�− +

�g�g� − 1�
2�+ . �43�

The function g here is an abbreviation for �1− f2. Taking
account of the self-consistency Eq. �11�, we obtain the en-
ergy difference between the normal and superconducting
states

−
Fs − Fn

2�TN�0�
= �

�	0
��f + 2��g − 1� +

f�f�
2�− +

g�g� − 1

2�+  .

�44�

One can check that this reduces to the known result for iso-
tropic s-wave cases with or without pair-breaking.8 This of-
fers a straightforward way to calculate the specific heat near
Tc. The calculation, in general, is tedious because one has to
keep track of terms up to �4��t2. We consider only the case
���=0.

Up to the fourth order in �, we have, with the help of Eqs.
�16� and �19�,

f =
�

�+
+

�

2�+
3� ��2�

2�+�+
− �2� , �45�

g = 1 −
�2

2�+
2 +

3�4

8�+
4 −

�2��2�
4�+�+

5 , �46�

where all �’s are taken at Tc. Substituting these in the energy
difference, we obtain

−
Fs − Fn

2�TN�0�
=

�4

4 ���4�
�+

3 −
1

2�+�+
4� . �47�

For large �+, one finds

���4�
�+

3 −
1

2�+�+
4� �

�3�4� − 2��+
2

3�T
. �48�

To complete the energy evaluation one needs ��T�, which
is obtained with the help of the self-consistency Eq. �27� and
expression �45� for f

�2 =
4�2Tc

2�1 − t�
3�4� − 2

. �49�

Thus, the energy difference between the normal and su-
perconducting states reads

Fn − Fs =
8�4N�0��+

2

3�2�3�4� − 2�
kB

4Tc
2�Tc − T�2 �50�

in common units. The specific heat jump at Tc follows:

V. G. KOGAN PHYSICAL REVIEW B 80, 214532 �2009�

214532-4



�C = Cs − Cn =
16�4kB

4N�0��+
2

3�2�3�4� − 2�
Tc

3. �51�

Within a weak coupling scheme, this result in a more general
form has been obtained in Ref. 14.

For the d-wave state on a cylindrical Fermi surface 
=�2 cos2 2
 and �4�=3 /2 this gives

�C =
32�4kB

4N�0��+
2

15�2 Tc
3. �52�

V. DISCUSSION

Figure 1 is a compilation of data on the slopes Hc2� for
1111 compounds with various dopants and, therefore, with
various Tc’s. An approximate scaling Hc2� �Tc is evident de-
spite the fact that the compounds examined have Tc’s varying
from 6 to 46 K. From this data one estimates the slope of
dHc2� /dTc as �0.2 T /K2. Then, the order of magnitude of
the Fermi velocity follows from �dHc2� /dTc���
0kB

2 /�2v2 as
v�107 cm /s, a reasonable order that can be taken as yet
another argument in favor of the picture presented.

In Fig. 2, the data for the 122 family are collected. The
same approximate scaling is seen albeit with a considerable
scatter. The latter might be caused by variety of reasons:
different criteria in extracting Hc2 from resistivity data, un-
avoidable uncertainties rooted in sample inhomogeneities in
determination of Tc and the slopes of Hc2�T� near Tc, pos-
sible differences in Fermi velocities and the order parameter
anisotropies, to name a few. Moreover, the model employing
only two scattering parameters for multiband iron-pnictides
is a far-reaching simplification, so that one can expect the
model to work qualitatively at best. Nevertheless, the ob-
served scaling seems robust. One can take this as evidence in
favor of a strong pair-breaking present in all compounds ex-
amined. It should be stressed again that for strongly aniso-
tropic order parameters, ����0, the Tc suppression �or the
pair-breaking, which is the same� is caused by the combined

effect of the transport and the spin-flip scattering.
We note also that in well-studied MgB2 with two s-type

gaps of the same sign, the slopes of Hc2 do not show a
similar behavior: one can suppress Tc by neutron irradiation
leaving the slopes Hc2� nearly unchanged.23 Moreover, carbon
doping enhances Hc2� �Tc� without causing a substantial re-
duction of Tc.

24

Figure 3 shows the specific heat jump measured in a num-
ber of compounds and reported in Ref. 1. The scaling �C
�Tc

3 suggested by Bud’ko, Ni, and Canfield is evident �see
also Ref. 26�. Again, it is worth noting that only the com-
bined rate �+ enters the coefficient in front of Tc

3 of Eq. �51�,
so that the source of Tc suppression is not necessarily the
spin-flip AG pair-breaking. The ever present transport scat-
tering suppresses Tc as well, provided the order parameter is

FIG. 1. �Color online� The slopes of Hc2�T� near Tc �the abso-
lute values� for a few 1111 compounds. The data for the first three
compounds in the legend are taken from Ref. 15; the remaining
three points are taken from Ref. 16. The two right-most points are
for Hc2,ab� of crystalline samples; the rest are for polycrystals, so that
all points, in fact, reflect Hc2,ab� .

FIG. 2. �Color online� The slopes Hc2,c�T� near Tc for a few 122
iron-pnictides. The data are taken from: RbFe2As2 �Ref. 17�,
KFe2As2 �Ref. 18�, Ba0.55K0.45Fe2As2 �Ref. 19�, the under-
doped �ud� and overdoped �od� Ba�Fe1−xCox�2Fe2As2 �Ref.
3�, Ba0.6K0.4Fe2As2 �Ref. 20�, Sr0.6K0.4Fe2As2 �Ref. 21�,
Ba�Fe-Ni�2Fe2As2, and Ba�Fe1−x−yCoxCuy�2Fe2As2 �Ref. 22�.

FIG. 3. �Color online� The specific heat jump versus Tc for a
few 122 compounds shown on a log-log plot. The dashed line cor-
responds to �C�Tc

3. Most of the data are from Ref. 1; the new data
points for mixed Co-Cu doping are shown by stars and taken by the
same group, but have not been included in the original publication.
The data point for Ba�Fe0.939Co0.061�2Fe2As2 is from Ref. 25 and
that for Ba0.6K0.4Fe2As2 from Ref. 19.
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strongly anisotropic. This is presumably the case of iron-
pnictides.

One may wonder why the scaling Hc2� �Tc and �C�Tc
3

seem to work across the whole class of iron pnictides for
compounds with different couplings, F surfaces, etc. Clearly,
the source of this scaling should be universal across the pnic-
tide family of materials. The pair-breaking is offered here as
such a universal source.

As for the apparent simplicity of the model used, one
should have in mind the often overlooked strength of the
weak-coupling scheme: the model is formulated in terms of
the measured critical temperature Tc, in which the coupling
constants and energy scales of the “glue bosons” are incor-
porated.

One should also bear in mind that a literal interpretation
of the model proposed here as implying that all iron-
pnictides have the same electronic structure and differ only
in scattering times �+ would, of course, be incorrect. Suffices
it to mention that, e.g., BaFe2As2 superconducts only being
doped, so that dopands play much more important role than
just to provide extra scattering. Hence, for each compound
listed in Fig. 3, the material characteristics entering Eq. �51�
�N�0�, �+, the anisotropy parameter �4�� differ. On the other
hand, the scaling shown in this figure implies that the com-
bination N�0��+

2 / �3�4�−2� in all these compounds is
roughly the same. This might be rationalized by notions that
�a� in all of them the carriers are supplied by Fe, and �b� that
in the gapless state with Tc�Tc0 in which all of them pre-
sumably reside, the pair-breaking parameter �+ is close to the
critical value where Tc=0.

Having succeeded in describing the scalings just dis-
cussed, one can venture to a prediction: according to Eq.
�41�, tunneling experiments are likely to show the ratio of the
apparent gap �m �where the total density of states N��� is

maximum� to Tc varying as 1 /Tc across the family of iron
pnictides.
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APPENDIX: MATERIALS WITH Š�‹Å0 NEAR Tc

Interestingly enough, the behavior of the Hc2 slopes as
functions of Tc turns out different if ���0. To see this,
consider the coefficient A of Eq. �34�. In terms of scattering
times, it reads

A =
2�Tc�+

2

3
−

��2

�Tc
�2�−

�+
− 1�ln

�−

2�+
. �A1�

Since all �’s are finite near the critical point where Tc→0,
the term ���2 is leading. Consider, e.g., a usual situation
���m

A �
��2ln 2

�Tc
. �A2�

After simple algebra, one obtains the slope of Hc2,c at Tc

dHc2,c

dT
= −


0

2��2Tc

��2ln 4

�va
22� + ���va

2�ln�2�m/�e3/2�
.

�A3�

Thus, the slopes Hc2� �1 /Tc, the dependence opposite to that
of the case ��=0.
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